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Abstract
By means of the ab initio all-electron new full-potential linear-muffin-tin orbitals method,
calculations were made for elastic constants C11, C12 and C44 for Si, ZrO2 and HfO2 in their
cubic phase, and constants C11, C22, C33, C12, C13, C23, C44, C55 and C66 for HfO2 in its
orthorhombic phase. Using the Voigt and Reuss theory, estimations were made for polycrystals
of their bulk, shear and Young moduli, and Poisson coefficients. The speed of elastic wave
propagations and Debye temperatures were estimated for polycrystals built from Si and the
above mentioned compounds. The semicore 4f14 electrons should be included in the valence set
of Hf atom in this all-electron approach if accurate results for elastic properties under pressures
are looked for.

1. Introduction

Ceramics such as HfO2 and ZrO2 are oxides that have raised
considerable interest in research and technology sectors during
the past two decades due to their excellent dielectric properties
and structural stability. Even though the normal phase is
monoclinic P21/c, by the addition of Y2O3 [1] it is possible to
stabilize a solid solution that contains a mixture of tetragonal
and cubic phases, while in powders with sizes smaller than
60 nm it is stable in the tetragonal and below 2 nm in the cubic
phase.

Application of pressures to the normal phase P21/c
allows the transition between the orthorhombic OI (Pbca)
and orthorhombic OII (Pnma) phases. When the applied
pressures exceed 30 GPa [15] the OI → OII transformation
is irreversible, with a stabilized Pnma phase with bulk
moduli B between 312 and 335 GPa, values that exceed
by approximately 80 GPa the normal phase value of B =
233 GPa. This latter process is known as hardening.

3 Author to whom any correspondence should be addressed.

By applying temperature, phases with tetragonal (P42nmc)
and cubic (Fm3m) structures are obtained [1]. The elastic prop-
erties of solids are important because they provide information
on interatomic interaction potentials and thus on fundamental
properties of the solid state. These constants are also related
thermodynamically to specific heat and thermal expansion. The
elastic properties determine the response of the crystal to ex-
ternally applied forces, and therefore define the bulk modulus,
shear modulus, Young modulus and the Poisson coefficient for
the material.

Pugh [2] introduced the ratio between bulk and shear
modulus, B/G, for polycrystalline phases as a means to
measure the ductile/brittle ratio in metals. A high (low) value
of the ratio B/G is associated with ductility (brittleness).
Efforts made to calculate the elastic constants of these
materials in their different phases have been relatively scarce.
The major difficulty in calculating such elastic constants
through ab initio methods lies in the fact that significant
accuracy is required in total bulk energy calculation and having
the ability to solve with precision the small variations in
such energies (of the order of 1/10 mRyd per atom of the
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compound) while being subjected to uniaxial, biaxial and shear
deformations, all of which are in the linear range.

2. Theoretical methodology

The elastic stiffness constant Ci j define the hardness of a
crystal when an external tension is applied. For small
deformations (isothermic) it is expected that the elastic energy
(energy of the deformed crystal minus the energy of the
undeformed crystal) presents a quadratic dependence with the
tensor of the deformation (Hooke’s law) [3]. The elastic
constant Ci j tensor is represented (in abbreviated form) by
means of a 6×6 square matrix, with 36 components. Due to the
symmetry of the tensor (Ci j = C ji ), the maximum number of
independent components is reduced to 21, applicable to cases
involving triclinic crystals, the sole symmetry operation being
the identity [4]. For other crystals with greater symmetry,
the number of independent constants is reduced even further.
For the extreme case of highly symmetric crystals with cubic
symmetry (such as Si in the diamond structure and the structure
for fluorite), the number of independent constants is reduced
to three (C11, C12, C44) [3] and for crystals with orthorhombic
structures, the number of elastic constants is nine (C11, C22,
C33, C12, C13, C23, C44, C55, C66) [4–6].

The elastic energy per unit volume of arbitrary deformed
crystal, as a function of the deformations ui , is expressed in the
following way [3], [7]:

U = 1
2 Ci j ui u j (1)

where U = (E − E0) is the elastic deformation energy per unit
volume, Ci j , ui are the components of the tensor of the elastic
constants and of the strain tensor, respectively. Note that the
subscripts of the equations (1) are in the notation presented by
Voigt [8], in which the labels 1, 2, 3, 4, 5 and 6 replace xx ,
yy, zz, yz, xz and xy, respectively. Keeping in mind what has
been presented up until now, and applying crystal symmetry
operations, the elastic energy U for cubic crystals (in our case,
the Fm3m fluorite structure) takes the form

U = 1
2 C11(u

2
1 + u2

2 + u2
3) + C12(u1u2 + u1u3 + u2u3)

+ 2C44(u
2
4 + u2

5 + u2
6) (2)

and for orthorhombic crystals (here, the Pnma symmetry) the
energy is

U = 1
2 (C11u2

1 + C22u2
2 + C2

33) + C12u1u2 + C13u1u3

+ C23u2u3 + 2(C44u2
4 + C55u2

5 + C66u2
6). (3)

The new full-potential linear-muffin-tin orbitals (NFP-
LMTO) ab initio method [9], based on smooth Hankel
functions [10] and on the local density functional theory
(LDA) [11, 12], is used for the calculation of total energies
for crystals with or without deformations. All calculations
were developed including three atoms in the Fm3m (fluorite)
cubic cell and 12 atoms in the Pnma (cotunnite) cell. The
atomic positions for each strained structure were relaxed by
minimizing the atomic force components through solving
damped movement equations by means of viscous friction
coefficients [13, 14].

Wavefunctions for Hf and O were optimized individually
in order to obtain total energies that converge in a few
mRyd/atom, taking as an example Hf in the oxide monoclinic
structure. The valence electronic configurations of the atomic
species were 6s2, 5d2, 4f14 for Hf, 2s2, 2p4 for oxygen, and 5s2,
5d2 for Zr. Note that we included the 4f14 electrons of the Hf
atom. Following the pseudopotential literature on HfO2, using
the NFP-LMTO method we have first-principles calculated the
structural and elastic properties, including these 4f electrons
in the core: while the equilibrium lattice constant was right,
we obtained a large disagreement in the bulk modulus, about
double the experimental value, 332 GPa [15]. Agreement with
the experimental bulk modulus, B , is found only when these
4f electrons are included in the valence set. Although the 4f
electrons appear as a narrow band, it seems that in our all-
electron method they play a role in the interatomic forces of
the oxide, mainly when the bonds are stretched/compressed
(two-body terms). Previous to this work, we developed
a detailed ab initio study of all known HfO2 phases [16]
using the pseudopotential-LDA based SIESTA code, and
found that, if the 4f electrons are included in the core and
utilizing Troullier–Martins pseudopotentials with nonlinear
corrections for the core–valence electron interactions, not only
do calculated structural and elastic properties show agreement
with experiments, but also the transition pressures between
normal and high pressures phases. [16]

In the cubic Fm3m structure, after obtaining the
equilibrium volume, deformations of approximately ±2%
relative to this range were performed; the criteria utilized
to perform such deformations in cubic crystals are those
presented in [17]. To determine the elastic constants for
orthorhombic HfO2, a series of deformations defined by u1,
u2 and u3 and their combinations were applied to the crystal.
In each run, all atomic positions in the cell are relaxed until
atomic forces lower than 0.01 eV Å

−1
are achieved. In this

manner, all values for elastic energy U , a product of the
deformations, were least-squares adjusted by means of the
following equation:

U = 1
2 (C11u2

1 + C22u2
2 + C33u2

3) + C12u1u2

+ C13u1u3 + C23u2u3. (4)

From the adjustments made, the values for the elastic constants
C11, C22, C33, C12, C13 and C23 were obtained as well as the
equilibrium lengths for the cell axes. It is important to note that
although the calculations for these elastic constants could have
been achieved separately by performing volume conserving
ui deformations in different directions and by conducting
adjustments in such curves to the energy equation [17], it was
found that the procedure of simultaneous deformations and
later adjustment to the energy equation is the most adequate
for these cases [18].

In order to calculate the elastic constants C44, C55 and
C66 in the OII structure, each Ci j was individually calculated
applying the corresponding shear deformation: u4 for the
determination of C44, u5 for C55 and u6 for C66, all of them
in the linear regime.
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Figure 1. Pnma-HfO2 band-structure along Brillouin zone high
symmetry directions.

3. Results and discussions

In figure 1 we show the band-structure of HfO2 in the cotunnite
structure, along high symmetry directions of the Brillouin
zone. The valence band has a 19 eV band-width, a value
which coincides with previous calculations made with first-
principles pseudopotentials [16, 31]. Above the bottom band
(composed by oxygen s-electrons) and located at −10 eV
below the Fermi level (top of the valence band), we found a
narrow band which corresponds to the 4f-Hf electrons. The
width of this narrow band is about 0.2 eV. The minimum band
gap is located at �, corresponding to a direct transition, and has
a width of 3.7 eV, higher than the 2.85 eV value we calculated
with the SIESTA code [16]. This increase is assigned to
a different treatment of core electrons. Figure 2 shows the
total density of states per formula unit for HfO2-Pnma. The
methodology used by other authors in determining the elastic
constants is usually based on the simultaneous application
of uniaxial deformations combined in such way that the
volume of the crystal is maintained constant [17]. Since
the present work is based on the application of uniaxial and
biaxial deformations which imply variations in volume, we
have verified the previously described method by applying
it first to the diamond structure of Si (semiconductor), an
element that has been widely characterized experimentally
and theoretically. Table 1 shows the elastic constant results.
The agreement with experiments is excellent; we found
an improvement in the precision of the C11, C12 values
for Si hereby obtained with respect to reference theoretical
values by Nielsen–Martin [19] found in the literature. We
hence extended the method in the calculations of constants
corresponding to ZrO2 and HfO2 in the cubic and orthorhombic
phases.

With these values for the elastic constants of single
crystals it is possible to calculate useful elastic properties
for polycrystals using the Voigt [8] and Reuss [20]
approximations. These approaches are for upper and lower

Figure 2. Pnma-HfO2 total density of states with the energy scale
relative to the top of the valence band. The narrow peak located at
−10 eV corresponds to Hf 4f electrons.

Table 1. Elastic constants calculated for Si-diamond structure ZrO2

and HfO2 in the Fm3m cubic phase, compared with available
experimental and theoretical values obtained by other research
groups. Experimental values for ZrO2 and HfO2 are extrapolated to
zero porosity (Pp = 0). All units are in GPa.

Material C11 C12 C44

Sia 164.0 67.4 76.6
Sib 167.5 65 80.1
Sic 159 61 85
HfO2

a 578.2 120.9 82.6
HfO2

d 477 113 100
ZrO2

a 513.9 122.7 72.3
ZrO2

d 508 132 78
ZrO2

e 409 53 60

a Present work.
b Experimental value at T = 73 K,
see [23].
c Calculated value through LDA
and ab initio pseudopotentials,
see [19].
d Extrapolated to Pp = 0,
according to Dole et al [24].
e Calculated value through a
theoretical empirical interatomic
potential method [25].

bounds of elastic constants, respectively. Hill [21, 22], took an
average of the two approaches and obtained a better agreement
with experiments. We follow the last procedure and estimated
the bulk modulus, shear modulus, Young’s modulus, Poisson’s
coefficient and the longitudinal, transverse and mean elastic
wave velocities for a given material, but in polycrystalline
form.

The bulk modulus, for a cubic mono-crystal is defined as:

B0 = 1
3 (C11 + 2C12). (5)

3



J. Phys.: Condens. Matter 20 (2008) 045213 C A Ponce et al

The shear modulus GH is defined to be an average between
of the shear moduli GReuss and GVoigt [21]

GH = 1
2 [GReuss + GVoigt]

5GVoigt = C11 − C12 + 3C44

5

GReuss
= 4(S11 − S12) + 3S44

(6)

where Si j are the compliance matrix elements and S is the
inverse matrix of the elastic constants matrix C . For crystals
with orthorhombic symmetry, the respective bulk modulus and
shear modulus are:

BH = 1
2 (BReuss + BVoigt)

BReuss = [(S11 + S22 + S33) + 2(S12 + S13 + S23)]−1

BVoigt = 1
9 (C11 + C22 + C33) + 2

9 (C12 + C13 + C23)

GH = 1
2 (GReuss + GVoigt)

GReuss = 15[4(S11 + S22 + S33) − 4(S12 + S13 + S23)

+ 3(S44 + S55 + S66)]−1

GVoigt = 1
15 (C11 + C22 + C33 − C12 − C13 − C23)

+ 1
5 (C44 + C55 + C66).

(7)

From BH and GH, the Poisson coefficient (ν), Young’s modulus
(E) and the values for the speed of sound, longitudinal (vl),
transverse (vt) and mean (vm), are determined:

ν =
1
2 (BH − 2

3 GH)

(BH + 1
3 GH)

E = 9BH(
1 + 3BH

GH

)

vt =
√

GH

ρ

vl =
(

(BH + 4
3 GH)

ρ

)

vm =
(

1

3

(
2

v3
t

+ 1

v3
l

))− 1
3

.

(8)

One of the standard methods of calculating the Debye
temperature θD is from elastic constant data, since θD is
proportional to the sound velocity (averaged) vm by the
equation [26]:

θD = h

k

[
3q

4π

Nρ

M

]1/3

vm (9)

and where h/k have the usual meanings of quantum
mechanics, N is Avogadro’s number, ρ is the density, M is
the molecular weight of the solid and q is the number of atoms
in the molecule.

Experimental elastic constants B , E , G of unstabilized,
partial and fully stabilized ZrO2 and HfO2 are porosity

dependent [1, 27, 28]. In order to compare with our theoretical
assessments for a fluorite (cubic) structure, in which no
porosity is included, one has to interpolate the available
experimental elastic constant to null porosity. That should
be possible to perform by, for example, using the following
equations given by Dole et al [24] for unstabilized HfO2 and
the E , G and B data at a given porosity Pp:

E = E(Pp=0)e
−4.17Pp (GPa)

G = G(Pp=0)e
−3.93Pp (GPa)

B = B(Pp=0)e
−5.48Pp (GPa).

(10)

The porosity comes from the appearance of vacancies and
voids in the crystal. By adding to the solution atomic
components different from Hf or Zr vacancies can be added.
In order to stabilize the cubic and tetragonal phases, yttrium in
the form of Y2O3 is added, where each mole of this compound
adds a mole of oxygen vacancies. In the following paragraphs
we describe how we model the effect of the added vacancies on
elastic constants, using the equations (10) of Dole et al [28].

Data for C11 = 380 GPa, C12 = 90 GPa, C44 =
80 GPa [1, 29] are available for the alloy HfO2 − x% Y2O3,
where x = 12%. The formula 12% Y2O3 in the compound
can be expressed as Y0.24O0.36. If there were no vacancies in
the oxide, this formula should be written as Y0.24O0.48, thus the
remaining term HfO2 in the alloy should be Hf0.76O1.52. This
yields as a result the stoichiometric formula Hf0.76Y0.24O1.88,
giving (2–1.88)/3 oxygen vacancies per atom in the matrix
or 0.48 vacancies per 12-atom cell. The porosity hereby
calculated is 0.0415%, defined as 0.48 times the percentage
of the ratio of the O atom vacancy volume (0.796 au3) and the
12-atom reference cell volume, in this case the cubic Fm3m
with 9.73 au lattice constant. The calculated values for C11,
C12 and C44 for zero porosity in HfO2 and assuming that each
Ci j is related to the bulk modulus are:

C11 = 380e5.48Pp = 477 GPa

C12 = 90e5.48Pp = 113 GPa

C44 = 80e5.48Pp = 100 GPa.

(11)

Tables of elastic constants for ZrO2 − 12% Y2O3 (having the
same 0.0415% porosity as the previous case) yield C11 =
405.1 GPa, C12 = 105.3 GPa and C44 = 61.80 GPa, thus
the values at zero porosity are again 25.5% greater: C11 =
508 GPa, C12 = 132 GPa and C44 = 78 GPa. These values
show good agreement with the hereby calculated values for
ZrO2 using FP-LMTO (see table 1). It must be taken into
account that the volume used here for oxygen vacancies is
approximate and was obtained from ab initio calculations with
12-atom cells and a oxygen vacancy.

Values are shown in table 2 for C11, C22, C33, C12,
C13, C23, C44, C55 and C66 for HfO2 orthorhombic crystals,
calculated through NFP-LMTO, and compared with those
calculated through the empirical interatomic model potential
(EMP) by Mirgorodsky et al [25]. The calculated values
for C11, C22 and C33 exceed 500 GPa, such as C11 in the
Fm3m phase, while the group of stiffness constants for biaxial
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Table 2. Elastic constants calculated for HfO2 (Pnma), compared
with theoretical and experimental values from the literature.

PP-PWc PP-PWd PP-PWe

Constants
(GPa)

NFP
LMTOa EMPb LDA LDA GGA LDA GGA

C11 534 477 — — — — —
C22 556 415 — — — — —
C33 625 446 — — — — —
C12 194 172 — — — — —
C13 231 202 — — — — —
C23 236 151 — — — — —
C44 36 31 — — — — —
C55 106 117 — — — — —
C66 140 132 — — — — —

B0 (Th) 335 263 306 312 259 295 252

B0 (Exp) 332f 340g

a Present work.
b Reference [25].
c Reference [30].
d Reference [31].
e Reference [32].
f Experimental value, see [15].
g Experimental value, see [33].

deformations are of the order of 200 Pa, which is almost
two times of that for C12 for the fluorite phase. This is a
consequence of the higher density in Pnma HfO2. Lastly, it
is observed that there is a large anisotropy between the elastic
rigidity constants C44, C55 and C66, which range from 36 to
140 GPa (see table 2)

This is also observed in the constants calculated with
the EMP model, and this shows the strong anisotropy in
the Pnma phase. It should be noted that the interatomic
model potential is approximate; it is adjusted to reproduce
the phonon frequencies and the effectiveness for predicting
elastic properties is sometimes limited. For example (see
table 1) C11 = 409 GPa in the EMP model compares well
with experimental values for C11 of 417 GPa, although this is
true for porous ZrO2 (solid solution of ZrO2 and Y2O3), which
make doubtful the comparison with theoretical results without
porosity. The bulk modulus calculated with such a model is
171 GPa, significantly below the value calculated with NFP-
LMTO of 253 GPa. Nevertheless, it should be noted that we
have made a very simple description of the dependence of the
elastic constant on porosity, and no ab initio theoretical study
of this sense is known to us.

The calculated elastic constants of Pnma-HfO2 are shown
in tables 2 and 3, compared with available data calculated with
the EMP model. We found larger discrepancies with respect to
this model in the stiffness constants C22, C33, corresponding to
uniaxial strains along the b and c axes, and C23 corresponding
to biaxial strains to the b and c axes as well. However,
discrepancies for shear strains are not large. The average of the
stiffness constants corresponding to uniaxial strains is about
550 GPa, which denotes a tough material. However, stiffness
constants for biaxial strains are about 200 GPa, lower but
anyway very high for an oxide. These six elastic constants give
in turn a very high bulk modulus, B = 335 GPa. This is good
in comparison with experimental data, B = 332 GPa [15] and

Table 3. Elastic and thermoacoustics properties in the polycrystal
form.

Fm3m Pnma

Const./Comp. Sia Sib ZrO2
a HfO2

a HfO2
a HfO2

c

B (GPa) 99.6 99.2 292.5 283.2 335 264
G (GPa) 63.7 66.9 141.9 130.5 108 94.6
E (GPa) 157.5 164.0 366.4 339.4 293 253.6
ν 0.236 0.224 0.291 0.300 0.354 0.34
vl (m s−1) 5159.6 5361.2 4778.0 3484.3 2999 2806
vt (m s−1) 8800.8 8993.5 8803.0 6521.4 6320 5698
vm (m s−1) 5730.3 5934.5 5331.0 3892.0 3374 3150
θD (K) 633.0 650.6 786.1 576.3 471 440
B/G 1.56 1.48 2.06 2.17 3.1 2.79

a Present work.
b Obtained values by means of experimental elastic constants,
see [23].
c Calculated with data taken from the EMP model [25].

B = 340 GPa [33]. Our previous theoretical LDA calculations
utilizing the SIESTA code, ab initio pseudopotentials (which
includes Hf partial core corrections) and the double-zeta local
basis set gave 328 GPa. Other LDA ab initio assessments gave
B = 306 GPa [30], B = 312 GPa [31] and B = 295 [32]. The
last authors reported, utilizing the GGA approach, even lower
values: B = 259 GPa [31] and B = 252 GPa [32]. These
important underestimations certainly proscribe the utilization
of GGA in the calculation of accurate elastic constant in these
oxides. Therefore, it seems that the present all-electron LDA
model accounts well for bond stretching interatomic forces.
In the case of shear moduli, we found similar values to the
EMP model, with large anisotropy between sliding planes
with shear strains of u4 and u5 and u6. The shear efforts to
deform the crystal along yz planes are much lower than the xz
and xy planes, respectively. This also affects the polycrystal
shear stiffness constant G, which drops from 130.5 GPa in the
Fm3m phase to 108 GPa in the Pnma phase. However, it is
higher than the value of 96 GPa calculated for the EMP model.
This fact also enhances the B/G value, which increases to
3.1, and the Poisson constant to 0.345, denoting more ductile
than brittle behavior in this calculation. Since G measures the
resistance to plastic deformations, if we look at a material with
higher strength it is preferable the utilization of the Fm3m
phase, which has lower bulk modulus (more compressible) but
higher G constants. We have to comment that this phase is the
stable one for un-doped particles with nano-grain sizes of less
than 2 nm.

4. Conclusions

An ab initio determination was made of the elastic coefficients
for cubic phase ZrO2 and HfO2 in cubic and orthorhombic
phases, and, from these, the mechanical and thermo-acoustic
properties of the same polycrystals. These compounds, which
possess high bulk moduli, turn out to be very hard materials
and are predicted to be show more ductility than brittleness.
These properties of high hardness and ductility suggest that
these materials are important for the optics and metallurgical
industries. The estimated elastic constants Ci j are shown to

5
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have good agreement with experimental values extrapolated to
zero porosity in the cubic phase of ZrO2, although for HfO2

in the same phase there is a discrepancy in C11 that should
be investigated, with more experimental approaches being
particularly called for. The values for the elastic constants for
orthorhombic HfO2 have been compared to those calculated
by the EMP model, while the bulk moduli obtained are in
excellent agreement with experimental values. However, we
have to wait for new elastic constant measurements to compare
with our predictions. Finally, we found that in the case of an
all-electron calculation like the present one, the semicore 4f14

electrons need to be included in the valence to get reliable
two-body interatomic forces and therefore accurate elastic
properties. In the case of pseudopotential calculations it seems
that this is taken into account with the inclusion, in Hf atomic
pseudopotentials, of partial core corrections [16].
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